

US009410809B2

(12) United States Patent Hogdal

(54) APPLYING A CORRECT FACTOR DERIVATIVE METHOD FOR DETERMINING AN ORIENTATION OF A PORTABLE ELECTRONIC DEVICE BASED ON SENSE GRAVITATION COMPONENT LINEAR ACCELERATE FILTER DATA OBTAINED

(75) Inventor: Greg Hogdal, Sammamish, WA (US)

(73) Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC, Redmond, WA

(US)

(*) Notice: Sul

Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 1025 days.

(21) Appl. No.: 13/329,131

(22) Filed: Dec. 16, 2011

(65) **Prior Publication Data**

US 2013/0158928 A1 Jun. 20, 2013

(51) Int. Cl. G01C 21/00 (2006.01)G01C 21/18 (2006.01)(2006.01)G01C 21/06 G01C 21/16 (2006.01)G01C 21/20 (2006.01)G01C 21/08 (2006.01)G01C 21/14 (2006.01)G01C 21/04 (2006.01)G01C 21/10 (2006.01)

(52) U.S. Cl.

(58) Field of Classification Search

CPC G01P 15/08; G01P 15/105; G01P 15/135; G01P 1/023; G01P 1/127; G01C 21/00;

(10) Patent No.: US 9,410,809 B2 (45) Date of Patent: Aug. 9, 2016

G01C 21/04; G01C 21/06; G01C 21/08; G01C 21/10; G01C 21/14; G01C 21/16; G01C 21/165; G01C 21/18; G01C 21/20 USPC702/104; 73/1.38 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,061,021 6,697,736 7,907,838 8,000,849 8,010,308	B2 B2 B2*	8/2011	
(Continued)			

OTHER PUBLICATIONS

Portable Absolute Orientation Estimation Device with Wireless Network under Accelerated Situation, IEEE 2004, Harada et al.*

(Continued)

Primary Examiner — John Breene
Assistant Examiner — Lynda Dinh
(74) Attorney, Agent, or Firm — Judy Yoo; Micky Minhas

(57) ABSTRACT

A method for determining an orientation of a portable or mobile electronic device includes determining an orientation of the device using at least a first inertial motion sensor (e.g., a gyroscope) with which the portable electronic device is equipped. A correction factor is provided to the orientation of the electronic device using a feedback control signal based on motion data obtained from at least a second inertial motion sensor (e.g. an accelerometer) to reduce drift in motion data obtained from the first inertial sensor. Responsive to a loss of valid motion data from the first inertial motion sensor, a rate at which the correction factor is provided to the orientation of the portable electronic device is increased.

19 Claims, 4 Drawing Sheets

